Fuzzy Region Simulation in Adaptive Control

نویسندگان

  • Uwe Keller
  • Donald Reay
  • Roy Leitch
چکیده

Uwe Keller, Donald Reay, Roy Leitch Intelligent Systems Laboratory Dept. of Computing & Electrical Engineering Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK [email protected] Abstract In this paper Fuzzy Region Simulation (FRenSi), which provides solutions for fuzzy dynamical models, is applied to qualitative adaptive control. FRenSi, combines fuzzy model parameters and fuzzy initial conditions to form a fuzzy region. A simulation algorithm generates the evolution of this fuzzy region. This region is described by vertices and cubic splines linking these corner points. The vertices are integrated numerically and new cubic splines are generated after each integration step. FRenSi provides solutions for fuzzy models without ambiguity and spurious behaviour. The FRenSi method is applied successfully to Qualitative Model Reference Adaptive Control (QMRAC) to form a variable precision control system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system

In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...

متن کامل

Analysis of Speed Control in DC Motor Drive Based on Model Reference Adaptive Control

This paper presents fuzzy and conventional performance of model reference adaptive control(MRAC) to control a DC drive. The aims of this work are achieving better match of motor speed with reference speed, decrease of noises under load changes and disturbances, and increase of system stability. The operation of nonadaptive control and the model reference of fuzzy and conventional adaptive contr...

متن کامل

Turbo Expander System Behavior Improvement Using an Adaptive Fuzzy PID Controller

Turbo-expanders are used in industries for cooling, liquefaction and also power generation. An important part of these turbines is the variable angle nozzle causing a nonlinear behavior that is not well recognized among the prime movers of the dispersed generators. In this paper, at first, the turbo expander system is evaluated in details and its nonlinear behavior is investigated. Then, the sy...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

Designing an adaptive fuzzy control for robot manipulators using PSO

This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...

متن کامل

Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy

This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007